Comparing [CII], CO and HI dynamics in nearby galaxies

Erwin de Blok (ASTRON, Netherlands)

Fabian Walter JD Smith Rodrigo Herrera-Camus Alberto Bolatto Rob Kennicutt

COMPARING [C II], H I, AND CO DYNAMICS OF NEARBY GALAXIES

W. J. G. DE BLOK^{1,2,3}, F. WALTER⁴, J.-D. T. SMITH⁵, R. HERRERA-CAMUS^{6,7}, A. D. BOLATTO^{6,7}, M. A. REQUENA-TORRES⁸, A. F. CROCKER^{5,9}, K. V. CROXALL¹⁰, R. C. KENNICUTT¹¹, J. KODA¹², L. ARMUS¹³, M. BOQUIEN¹⁴, D. DALE¹⁵, K. KRECKEL⁴, AND S. MEIDT⁴ ¹ Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands ² Astrophysics, Cosmology and Gravity Centre, Univ. of Cape Town, Private Bag X3, Rondebosch 7701, South Africa Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands ⁴ Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany ⁵ Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA ⁶ Department of Astronomy, University of Maryland, College Park, MD 20742, USA ⁷ Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742, USA ⁸ Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA ⁹ Department of Physics, Reed College, Portland, OR 97202, USA ¹⁰ Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210, USA ¹¹ Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK ¹² Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA ³ Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125, USA ¹⁴ Universidad de Antofagasta, Unidad de Astronomía, Avenida Angamos 601, 02800 Antofagasta, Chile ¹⁵ Department of Physics & Astronomy, University of Wyoming, WY 82071, USA Received 2015 December 3; accepted 2016 April 28; published 2016 August 4

THE ASTRONOMICAL JOURNAL, 147:96 (14pp), 2014 May © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-6256/147/5/96

THE IMPACT OF THE GAS DISTRIBUTION ON THE DETERMINATION OF DYNAMICAL MASSES OF GALAXIES USING UNRESOLVED OBSERVATIONS

W. J. G. DE $BLOK^{1,2,3}$ and Fabian Walter⁴

¹ Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands
 ² Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
 ³ Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
 ⁴ Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany
 Received 2013 October 18; accepted 2014 January 30; published 2014 March 24

- dynamics of gas in galaxies: HI
- extended, constant surf dens
- but faint beyond z~0.2
- use CO: bright, but more compact, exponential
- but even this difficult at z>5 or so

Atomic Gas VLA 21cm data THINGS + new & archival Old Stars Near infrared intensity From SINGS and LVL

HERACLES survey (Leroy et al 2011)

- use C⁺ or [CII] 158 μm or ~1900 GHz
- main cooling line ISM, usually brightest
- can be 50,000 times brighter than CO
- in ALMA bands between z~1 and ~20

- at high z observations will be not or marginally resolved
- dynamics information most likely from global profiles (integrated spectra)
- global profiles do not give spatial information and depend on tracer
- real problem: what is [CII] distribution?
- problem: z=0 only from space

- can make different arguments
- [CII] associated with ionised gas, ionised associated with SF,
 CO associated with SF,
 [CII] ↔ CO
- [CII] main cooling line of ISM: [CII] ↔ HI
- need resolved observations

(but this talk will not be about the detailed [CII] physics)

- global profile from integrated flux in velocity bins
- depends on rotation curve and tracer distribution
- dynamical mass: $M \sim V^2 R$
- what is V and what is effective R

- dB & Walter (2014): use model rotation curves and radial density distributions
- assume Freeman disk and test l = (h/4, h/2, h, 2h, 4h)
- also flat distribution (HI) and ℓ = 0.64h (CO; Schruba et al 2011)

measurable effect on slope of Tully-Fisher

compare <u>THINGS (HI)</u> and <u>HERACLES (CO)</u>

Frank et al 2015

- Compare CO, HI, [CII]
- HI: THINGS: ~11", 2.6 or 5.2 km/s
- CO: HERACLES: 13", 5.2 km/s
- [CII]: KINGFISH (PACS, Herschel): 14", 239 km/s, major axis strips
- [CII] SOFIA: 14", 5 km/s, pointings in galaxies
- Overlap galaxies where all three present

PROPERTIES OF SAMPLE GALAXIES.

Name	D	M_B	i	$\log D_{25}$
(1)	(Mpc) (2)	(mag) (3)	$(^{\circ})$ (4)	$(\log 0.1')$ (5)
NGC 0628	7.3	-19.97	7	1.99
NGC 2976	3.6	-17.78	65	1.86
NGC 3184	11.1	-19.92	16	1.87
NGC 3351	10.1	-19.88	41	1.86
NGC 3521	10.7	-20.94	73	1.92
NGC 3627	9.3	-20.74	62	2.01
NGC 4736	4.7	-19.80	41	1.89
$\operatorname{NGC}5055$	10.1	-21.12	59	2.07
$\mathrm{NGC}\ 5457$	7.4	-21.05	18	2.38
NGC 6946	5.9	-20.61	33	2.06

mom0

mom1

NGC 5055

radial inclinationcorrected surface density profile using known THINGS orientation parameters

NGC 5055

trends also hold for outer disk only, so not caused by possibly different inner parts

[CII] follows CO more closely, and comparable to optical

[CII] follows CO more closely than HI consistent with [CII] tracer of SF

mom0

mom1

NGC 5055

V_{HI} (KM S⁻')

∨_н — ∨[Сіі]

global "strip" profiles

thick: HI (also smoothed) thin: CO (also smoothed) histo: [CII]

• For NGC 5055 we see better agreement with CO

 Other galaxies not enough velocity width

Smaller scales: SOFIA data

- probe SF regions in nearby galaxies
- [CII] observed with GREAT in 2014
- PI Herrara-Camus

- radial profiles show CO-[CII] agreement in 2D
- test 3D check velocities and dispersions at higher angular and velocity resolution

Smaller scales: SOFIA data

[CII] dispersions closer to CO
mean velocities agree

Summary

- [CII] radial surface density follows
 CO more closely than HI
- Integrated spectrum agrees
- Assuming CO, HI, [CII], SFR relations hold, [CII] observations at high z should be treated more like CO *)